
Constraint-Aware Coordinated Robotic Construction of
Generic Structures

by

David Benjamin Stein

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c© David Benjamin Stein, MMXI. All rights reserved.

The author hereby grants to MIT and MIT Lincoln Laboratory permission
to reproduce and distribute publicly paper and electronic copies of this

thesis document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

June 20, 2011

Certified by .
Daniela Rus

Professor
Thesis Supervisor

Accepted by. .
Christopher Terman

Chairman, Department Committee on Graduate Theses

Constraint-Aware Coordinated Robotic Construction of Generic

Structures

by

David Benjamin Stein

Submitted to the Department of Electrical Engineering and Computer Science
on June 20, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering

Abstract
This thesis considers the problem of distributed construction. We focus on the problem
of designing algorithms for robots working on large stationary construction projects. We
present fully distributed algorithms which tend to maximize the amount of work being
done by the system given that robots may be added or removed from a site in real time.
We also present experimental implementations and analysis of our both algorithms and the
foundational work this thesis extends.

Thesis Supervisor: Daniela Rus
Title: Professor

2

Acknowledgements

Thanks to the Boeing Corporation for sponsoring this research; to Daniela Rus for her ad-

vice and guidance over the past two years; to the people who worked on this project with

me: Seungkook Yun, Matthew Faulkner, Lauren White, Adrienne Bolger, and T. Ryan

Schoen; to Brian Julian, Marek Doniec and the members of the Distributed Robotcs Lab-

oratory who helped teach me the ropes, and of course to my family and friends for their

support.

Finally, an additional thank you to Ryan and Daniela for encouraging me to complete

this thesis after nearly two years of leave from academia.

3

Contents

1 Introduction 11

1.1 Distributed Construction . 13

1.2 Contributions . 13

1.2.1 Experimental Analysis of [1] . 13

1.2.2 Part Ordering in Assembly Tasks 14

1.2.3 Discrete Partitioning . 14

1.2.4 Experiment for Coordinated Construction with Part Ordering 14

2 Related Work 16

2.1 Construction Robots . 16

2.2 Distributed Coverage . 17

2.3 Extentions on this work . 18

3 Problem Formulation 19

3.1 Overview: Distributed Robotic Construction 19

3.2 Demanding mass . 20

3.3 Task Partitioning . 20

4 Preliminary Experiments 21

4.1 Foundational work . 21

4.2 Platform . 22

4.2.1 Experimental Testbed . 22

4.2.2 Mobile manipulator . 23

4

4.2.3 Smart parts: Instrumented trusses and connectors 23

4.2.4 Infrastructure for localization and communication 24

4.2.5 Software architecture . 26

4.3 From Theory to Practice . 27

4.3.1 Delivery . 27

4.3.2 Assembly . 30

4.4 Results . 31

4.4.1 Test Scenario . 31

4.4.2 Robot Adaptation . 32

4.4.3 Run Time Empirical Analysis . 33

4.5 Identified Next Step . 35

5 Considering Physical Constraints 36

5.1 Overview of Construction Algorithm . 36

5.2 Equal Mass Partitioning using a Discrete Approach 38

5.2.1 Algorithm . 39

5.2.2 Analysis and Experiments . 41

5.3 Delivery and Assembly with Part Ordering 44

5.3.1 Algorithm . 44

5.3.2 Runtime . 49

5.3.3 Convergence . 51

5.4 Experiments in Simulation . 51

5.4.1 Simulation Example: Model Plane 53

6 Feasability Experiments 54

6.1 Software . 54

6.2 Platform . 57

6.3 Results . 58

6.3.1 Walkthough of single iteration . 59

5

7 Extended Experiments 62

7.1 Implementation . 62

7.2 Experiments . 63

7.2.1 Results (two robots) . 63

7.2.2 Results (four robots) . 65

8 Conclusion and Future Work 66

8.1 Summary of Contributions . 66

8.2 Lessons Learned . 67

8.3 Future Work . 68

A Complexity of Equal-Mass Convex Partitioning of Pointmasses 69

6

List of Figures

1-1 Construction worker fatality statistics . 12

1-2 Snapshot from final experiments . 15

4-1 First iteration platform . 24

4-2 Smart Parts: a connector and truss . 25

4-3 Smart parts: the IR beacon . 25

4-4 Rendering of construction task (cube) . 26

4-5 Software architecture of first iteration platform 27

4-6 Delivery state machine . 28

4-7 Assembly state machine . 30

4-8 Snapshots of grasping . 32

4-9 Demanding mass of assembly robots over time in experiments 33

4-10 Snapshots of a test run . 34

5-1 Illustration of stealable vertices . 40

5-2 Results from run of partition algorithm . 43

5-3 Demanding mass over run of partitioning algorithm 44

5-4 Simulation: building a solid cube . 50

5-5 Uniform mass vs. prioritized density function 50

5-6 Simulation: building a plane . 52

6-1 The shapes built in our experiments . 55

6-2 Second iteration experimental platform . 55

7

6-3 Dependency chart of software . 56

6-4 Information flow during experiment . 57

6-5 Experimental platform building a box . 58

6-6 Demanding mass over time . 59

6-7 Global state over time during sample experiment 60

6-8 Arm Inaccuracies . 60

7-1 Side view of the KUKA YouBot. The holonomic base allows for omnidi-

rectional movement, while the five d.o.f. arm provides high-fidelity ma-

niputation in the workspace around the robot 63

7-2 An assembly robot places the final part on the three-dimensional tower.

The tower is composed of six layers of the box design simulated in figure

6-8. This tower is the result of trial #1 from Table 7.1. 64

8

List of Tables

4.1 Specifications of the robot . 23

4.2 Controller from [2] Vs. Experiment . 28

4.3 Summary of Robot Delivery Test Runs 34

6.1 Summary of differences between our theoretical algorithms and system im-

plementation. 56

6.2 Robot Assembly Test Run Summary . 61

7.1 Summary of two-robot assembly trials for a tower. 64

7.2 Summary of four-robot assembly trials for a tower. 65

9

Organization of Thesis

This thesis is arranged in order of motivation, but each chapter is intended to be readable

given only the problem formulation (ch. 3). A high level overview of the problem space

and the algorithmic structure this work uses as a foundation is introduced in chapter 3 with

an experimental analysis of other work based on that foundation provided in chapter 4.

The main algorithmic contribution of this thesis is covered in chapter 5. The experimental

validation of these algorithms is covered in chapters 6 and 7.

10

Chapter 1

Introduction

There has been a clear motivation to find mechanical and robotic solutions to construction

tasks, which can require work that is dangerous, difficult, or unpleasant for humans to per-

form. Human workers also can take longer to complete dedicated tasks than their robotic

counterparts. These factors have lead to much research in robotic assembly lines, which

now handle not only mass production, but even to-order, customized, and low-volume fab-

rication [3, 4].

Despite this, current state of the art for construction of large and static structures that

do not fit into a traditional assembly line approach still rely heavily on humans performing

tasks that could be potentially automated. This leads to workers performing potentially

avoidable tasks that are dangerous or unpleasant. In 2009, 14% of workplace fatalities

in the US occurred to construction workings, making construction the occupation that ex-

perienced the second most deaths that year and providing a clear motivation to develop

automated solutions to construction tasks (Figure 1-1)[5].

Advances in robotic manipulation, mobility, and localization have reached a point

where providing mobility in constrained dynamic environments is feasible for service robots.

These advances will facilitate a discussion of largely automated construction under a new

paradigm of unmoving structures being worked on by mobile robots. However, this ap-

proach requires the robots to have local intelligence, and either depend on a central con-

troller - a single point of failure for the entire system - or work towards a goal as a fully

11

20

4%

5%

6%

6%

5%

7%

7%

9%

22%

3%

3%

3%

4%

7%

7%

9%

12%

25%

0% 5% 10% 15% 20% 25% 30%

2009

2008

Distribution of fatal work injuries by selected occupations in the private
construction industry, 2008–2009*

Percent of private construction fatal work injuries

Construction laborers

Carpenters

Construction managers

First-line supervisors/
managers of construction

trades and extraction workers

Roofers

Electricians

Truck drivers, heavy
and tractor-trailer

Painters, construction and
maintenance

Total fatal work injuries in 2009 = 816

Total fatal work injuries in 2008 = 975

*Data for 2009 are preliminary. Data for prior years are revised and final.
SOURCE: U.S. Bureau of Labor Statistics, U.S. Department of Labor, 2010.

Fatal work injuries involving construction laborers accounted for about one out of every four private construction
fatal work injuries in 2009. Total fatal work injuries in construction declined by 16 percent from 2008 to 2009.

Construction equipment
operators

Figure 1-1: Construction work is dangerous, especially general construction. We would
like to remove the need for human performance of the most dangerous and unpleasant tasks.
Figure reproduced from a 2010 press release from the U.S. Bureau of Labor Statistics.

12

or partially distributed system. We focus on developing a fully autonomous distributed

construction system.

1.1 Distributed Construction

We consider the problem of distributed construction. If we imagine a construction task

with two major classes of problems – carrying parts to the site, which requires less high-

precision actuation but a high load capacity (i.e. carrying a plank to the work site); and

connecting parts to a structure, which places more emphasis on precision and sensing (i.e.

screwing the plank in place) – we can see that there is a tendency towards creating a hetero-

geneous system. We focus on the problem of designing algorithms that tend to maximize

the amount of work being done in a system given delivery and assembly robots which may

be further sub-specialized, and which can be added or removed from a site in real time

in such a way that the system reacts. We also dismiss using a single head node, as that

introduces limits both in fault tolerance and in scalability due to communication.

1.2 Contributions

This work is founded strongly on the framework described in [6], which outlines a general

approach distributed assembly of truss structures. This thesis extends that work in a number

of ways.

1.2.1 Experimental Analysis of [1]

We performed experimental analysis of the algorithms described in [1]. Limiting classes

of robots to assembly and delivery and shrinking communication radii in software, we im-

plemented the distributed controllers described by Yun et. al. and identified key areas for

improvement and modification. We also developed a low-cost platform for performing fu-

ture experiments on distributed construction, and describe an alternative to vision or range

13

sensing for object recognition and manipulation that moves some intelligence into the part

being manipulated. This is discussed at length in Chapter 4

1.2.2 Part Ordering in Assembly Tasks

In section 5.3 we describe an algorithm for deciding which part to place within a partition

such that key global invariants are maintained. In this thesis we consider the reachability

of all active work sites and the physical stability of a partially constructed system. We

demonstrate that even in a dynamic system this priority can be computed efficiently using

only local information.

1.2.3 Discrete Partitioning

The previous work in partitioning assumes either some continuous differentiable function

describing the importance of any location in a space or a graph connecting points. In

section 5.2 we demonstrate an algorithm for partitioning sets of points in Cartesian space

dynamically.

1.2.4 Experiment for Coordinated Construction with Part Ordering

Using the next iteration of the platform introduced in chapter 6, we provide experimental

validation that our new controllers and extensions of the algorithms from [6] address the

areas of interest we identified in our initial experiments.

14

Figure 1-2: Image from experimental implementation the algorithms presented in this the-
sis. A full discussion of our implementation can be found in chapter 6

15

Chapter 2

Related Work

This research addresses problems in distributed control and task partitioning, which have

been explored both in the context of robots, and in several related fields. We also look to

examples from industry and current practice in construction as inspiration and justification

for our models and approaches.

2.1 Construction Robots

Our problem definition, presented in detail in Chapter 3, is inspired by current industry

models. Automated robotic assembly is one of the original and most recognizable appli-

cation of robotics, and there are countless examples of successes with the automation of

factories of everything from cars to food [7, 8]. We view construction as an assembly pro-

cess where the thing being built is static and the robots move. We present a selection of

examples of platforms that could allow for this sort of approach.

The advent of online shopping has led to a invigoration of the mail-order model of

sales, where a central set of warehouses deals with orders from customers over a much

larger area than a store. This has led to a number of compelling examples of distributed

and robotic warehousing systems which can store and recover items efficiently on demand

[9, 10, 11]. Teller et. al. demonstrate a forklift which can semiautonomously manage a

partially structured warehouse [12]. For much of this thesis, we treat the existence of some

16

depot which can provide parts as given.

The problem of mobile robots capable of manipulation and construction tasks is a very

active area of research, and a great deal of robots have been demonstrated academically or

are available commercially. Our work is implemented to run on any mobile manipulator

with ROS drivers, which WillowGarage maintains a list of on their website [13]

2.2 Distributed Coverage

There is a significant body of related algorithmic work, especially relating to partitioning of

spaces, [14] contains a good introduction to distributed partition of spaces under the section

on coverage. In the construction space, a simple distributed 3D construction algorithm is

described in [15], while [16] describes a 3D construction algorithm for modular blocks in a

distributed setting. Stochastic algorithms for robotic construction with dependency on raw

materials are analyzed in [17]. An algorithm for identifying and partitioning construction

into subassemblies based on the relationship between parts is described in [18]. Previous

work in on robotic construction from our lab includes Shady3D [19] utilizing a passive bar

and an optimal algorithm for reconfiguration of a given truss structure to a target structure

[1], and experiments in building truss structures [20].

Using Voronoi partitions to deploy robots for coverage was originally proposed in [21]

and has been extended several times since then for tasks such as adaptive coverage [22] and

equitable partitioning [23]. Our most recent work extends the idea of equitable partitioning

and combines it with coordinated construction of truss structures [2], locational optimiza-

tion [24], and adaptation to failure and shape change [25]. Recently in [26] Hsieh et. al.

extended our work to consider the complexity of a target structure during construction to

aid delivery, a topic we also address under a different set of constrains (our focus in this

space is strong guarantees of completion of a task given multiple classes of constraint). We

also use insights on the relationships between polygons in low-dimensional space gleaned

from [27] and [28] in our partitioning algorithms.

17

2.3 Extentions on this work

The work outlined in this thesis, especially the constraint model outlined in chapter 3 was

used as a basis for the work in [29, 30, 31].

18

Chapter 3

Problem Formulation

3.1 Overview: Distributed Robotic Construction

We consider the task of building some structure in a region Q using a heterogeneous set

of robots divided into two classes: assembly robots and delivery robots. Delivery robots

are robots devoted to retrieving parts and bringing them to the appropriate point in an

assembly. Delivery robots take parts and attach them to some final assembly. Robots may

be added or removed during runtime, either due to unexpected failures or some deliberate

or external change in the availability of robots to the system. Our measure of success is the

presentation of distributed algorithms which allow a structure to be built successfully while

maximizing the amount of robots working at any given time. We should also be resistant

to changes in the number of robots in the system.

We use a decentralized algorithm originally proposed by Yun. et. al. that coordinates

the robot team to deliver parts so that the goal assembly can be completed with maximum

parallelism [2]. Algorithm 1 shows the main flow of construction in a centralized view. In

the first phase, assembly robots locate themselves using a distributed coverage controller

which assigns to each robot areas of the target structure that have approximately the same

assembly complexity. In the second phase the delivering robots move back and forth to

carry source components to the assembly robots. The assembly phase continues until there

are no source component left or the assembly structure has been completed.

19

Algorithm 1 Construction Algorithm
1: Deploy the assembly robots in Q
2: Place the assembly robots at optimal task locations in Q
3: repeat
4: delivering robots: carry source components to the assembly robots
5: assembly robots: assemble the delivered components
6: until task completed or out of parts

3.2 Demanding mass

We assume that we have been provided with a blueprint that described the structure to be

build. For any part v in the blueprint we define the demanding mass φ(v) to be the priority

of that part. That is, a part with higher mass should be placed before parts with lower mass.

In related and foundational work the function φ is smoothed to be continuous, typically by

defining anything within the space occupied by a part as having constant positive mass and

setting the φ of any empty space to zero.

3.3 Task Partitioning

Given multiple assembly robots, we would like to partition the space such that as many

assembly robots are working at any time. To achieve this, we partition the incomplete

tasks such that each assembly robot r is assigned a partition Pr. We require that each

partition is convex and non-overlapping to reduce the need for robots to solve multi-robot

navigation problems. Partitions should also have equal mass to ensure that robots have

similar workloads and queues, which requires real-time balancing to accommodate changes

in the robots in the system. As with all algorithms, we only present algorithms that are fully

distributed and require only single-hop communication.

20

Chapter 4

Preliminary Experiments

4.1 Foundational work

The system presented in [1] focused on truss structures built with two types of components:

connectors and links in order to simplify exposition and figures. The work assumes that the

robots move freely in an Euclidean space (2D and 3D).

Task Allocation by Coverage with Equal-mass Partitions

The problem formulation from [1] closely resembles the one discussed in chapter 3. Sup-

pose n assembling robots cover region Q with the configuration {p1, ..., pn}, where pi is

the position vector of the ith robot. Given a point q in Q, the nearest robot to q will execute

the assembly task at q. Each robot is allocated the assembly task that includes its Voronoi

partition Vi in Q.

Vi = {q ∈ Q| ‖q− pi‖ ≤ ‖q− pj‖ ,∀j 6= i} (4.1)

The target density function φt is the density of truss elements, and it is fixed during the

construction phase. Given Vi, we define its mass property as the integral of the target

density function in the area.

MVi
=

∫
Vi

φt(q)dq (4.2)

21

Each robot follows its own local controller, designed to achieve a global distribution of

robots so that each robot to have the same amount of assembly work. We call this equal-

mass partitioning. The problem is challenging because the Voronoi tessellation evolves

as robots act. Yun et. al. developed a decentralized controller for equal-mass partioning

of spaces given a continuous, differential φ in [2]. This thesis presents a decentralized

controller for equal-mass partitioning in Section 5.2

Delivery and Assembly Algorithms

Once the assembly robots are in place, construction may begin. During construction we

distributed the source components (truss elements and connectors) to the assembly robots in

a balanced way. Global balance, which is defined as balance of delivery to all the assembly

robots, is asymptotically achieved by a probabilistic target selection of delivering robots

that uses φt as a probability density function. For local balance defined for only neighboring

robots, the delivering robots were driven by the gradient of demanding mass defined as

the remaining structure to be assembled by the robot. Robots with more work to do get

parts before robots with less work. Each assembly robot waited for a new truss element or

connector and assembled it to the most demanding location in its Voronoi region. Therefore,

construction is purely driven by the density function regardless of the amount of the source

components. We ensured all control processes were distributed and robot communication

was restricted to direct neighbors.

4.2 Platform

4.2.1 Experimental Testbed

Our hardware system consists of a team of mobile manipulators, smart parts each with an

embedded communication device, and a motion capture system. The robots operate on a

square area, and a source cache is located at the end of the workspace (The blue half-circle

plate in Figure 4-10). Trusses and connectors are manually supplied to the cache during

22

Mobile iRobot iCreate

Arm

Model CrustCrawler SG5-UT
DoF 4
Reach 0.5 m
Payload 0.6 kg

Communication IR, UDP, xBee

Table 4.1: Specifications of the robot

experiments. In order to help grasping, each 3D-printed smart part contains a custom IR

chip and a battery designed to talk to the robots. The robots localize using data from the

motion capture system broadcast over a mesh network.

4.2.2 Mobile manipulator

The robot consists of a commercially available iCreate mobile platform and a CrustCrawler

robotic arm with a custom chassis as shown in Figure 4-1. Specifications of each compo-

nent are in Table 4.1. The gripper of the arm has been replaced by an instrumented gripper

which contains an infrared communication transceiver and is contoured to align a grasped

part as the gripper closes. The special design allows the gripper to reliably grasp parts de-

spite centimeter-scale uncertainty in a position of the parts, by passively aligning the grasp

point into a unique orientation as the gripper closes. The robot has three communication

protocols: IR, UDP and xBee, which are used for communication with the smart parts,

other robots and motion capture system, respectively. We equipped each robot with a small

Dell Inspiron Mini 10s netbook which runs a Java-based controller.

4.2.3 Smart parts: Instrumented trusses and connectors

Smart parts enable grasping for robotic delivery and assembly via communication. We

explore the use of communication as an alternative to using computer vision for part identi-

fication and grasping. IR communication devices are instrumented as shown in Figure 4-3

on the robots and within each parts. A part can guide a robot to its location and tell the

robot its part type.

23

Figure 4-1: Side view of robot hardware with the Crustcrawler arm. From a fixed base, the
arm allows for grasping an object on the ground in a half-arc in front of it with a depth of
about 20cm.

Figure 4-2 shows two types of the smart parts: truss and connector. The connector is

capable of connecting 6 trusses in the North, South, East, West, Up, and Down directions.

Figure 4-4 shows a cube built from 8 connectors and 12 trusses. With a rechargeable 3.7v

210mAh lithium polymer battery, the parts weigh 60 grams. The truss is 18 cm long.

4.2.4 Infrastructure for localization and communication

For delivery and assembly, the robots receive precise location information from a Vicon

motion capture system providing the 2D positions and the rotational heading with accuracy

to the millimeter and milli-radian respectively at 10 Hz using a commercial xBee RF (radio

frequency) wireless mesh network. Between the robots, a UDP multicast channel on the

local network is implemented with a singe WLAN router. The UDP packets contain a

logical time-stamp, a robot ID number, their current positions, and their current target

robot. The robots also broadcast their states such as whether or not they are currently

carrying or dropping off a part, which part type they are carrying, where they are carrying

this payload, and the knowledge of any other known placed parts.

24

Figure 4-2: Smarts parts to be delivered: (LEFT) a red connector (RIGHT) a blue truss

Figure 4-3: The small IR communication modules on a PCB that can be embedded in parts
to create a smart environment for the robots to sense.

25

Figure 4-4: This 3D-rendered image of a cube is constructed from 8 junctions, and 12
struts.

4.2.5 Software architecture

The software architecture is structured hierarchically. The highest level planner can be

swapped while using the same underlying modules. We use this modularity to create as-

sembly and delivery planners, either of which can control the robot functions as shown in

Figure 4-5.

Each software module is implemented in Java and runs in its own Java thread. The

planner thread controls manipulation and motion of a robot. The planner gives the robot

only an end destination and information on any obstacles, such as moving robots or parts on

the ground. The planner waits for the motion to finish before trying to manipulate the arm,

and gives the robot arm two commands: pick up the part or put down the part. The planner

makes the decisions on where and when to move and manipulate parts by updating with the

information received by the communication module. The communication module contains

the most up to date information for the planner, which the planner uses to determine where

26

Figure 4-5: The hierarchical software architecture of the robot platform.

to move next. The planner is responsible for navigation, manipulation and communication

modules commands , and these three modules handle low level control for the mobile, the

arm, the manipulating IR sensors, and the communication messaging hardware.

4.3 From Theory to Practice

Implementing Algorithm 1 on the robot system requires revisiting its assumptions with

respect to what can be measured, implemented, and computed efficiently, and making cor-

responding changes to control loops. The main differences between the theory and the

practice are listed in Table 4.2. The most important components are manipulation and

navigation, used both for assembly and delivery.

4.3.1 Delivery

The delivery algorithm, constructed as a finite state machine in Figure 4-6, follows the

theory and takes steps to account for the real world challenges of multiple robot systems

such as collision avoidance, asynchronous communication, and part dependencies. The

robots have theoretical access to perfect information about the locations and demanding

mass value of the surrounding robots, which we replace with a fault tolerant, asynchronous

communication protocol to allow robots to learn about the surrounding parts and robots.

27

Experiment Controller from [2]
• Nonholonomic robot dynamics arises
position errors and turning delays

• Holonomic robot

• Noisy measurement of global position • Knowledge of exact global position
• Robots with volume and dynamics, path
planning required

• Robots are point masses

• Collision avoidance algorithm required • Robots pass through the environment
• The next part to be delivered is depen-
dent of the current structure

• No dependency between trusses and
connectors

• Pickup causes a bottleneck • Picking up parts from supply cache
takes very short time

• IR beacons for communication between
robots and materials

• Pin-point knowledge of types and loca-
tions of materials

• UDP messaging system using acknowl-
edgments and logical time to recover
packet loss

• Synchronous communication for com-
plete information about surroundings

• Asynchronous propagation of informa-
tion

• Immediate update of information from
neighbors

• Hardware failure causes part to be
dropped

• Parts never lost or dropped on map

Table 4.2: Controller from [2] Vs. Experiment

Figure 4-6: The task planning event loop for the delivery robots. The main loop pauses
and loops back on itself at points where continuing requires asynchronous communication
from other robots.

28

Algorithm 2 Delivery Robot Part Delivery Algorithm
1: repeat
2: Move to supply source
3: Pick up part
4: Move to random location on map
5: repeat
6: Listen for demanding mass from nearby assembly robots
7: until Sufficient network time passes.
8: Target assembly robot with highest demanding mass.
9: repeat

10: Inform target robot of our intent to deliver a part
11: until We receive a response from target
12: Move to delivery location
13: Put down part
14: repeat
15: Inform target that part has been delivered
16: until We receive a response from target
17: until No more assembly robots asking for parts.

Finally, the original algorithm assumes that the delivery order of parts will have no affect

on the assembly of the structure. The practical delivery algorithm replaces the notion of

parts as simple blocks with a model of parts as part of a blueprint, where the order in which

parts are delivered can be factored into demanding mass calculated at any given time. These

extensions to the algorithm allow it to be carried out on the physical system.

The system follows Algorithm 2 to complete its task, with the sub-modules taking over

much of the error-handling. The navigation module, as discussed earlier, handles possible

collisions while moving to the source and to robots, and it waits for the source to be clear

of other robots before docking. The delivery robot acquires a specialized part from the

supply source by performing a scan with its gripper. Asynchronous communication takes

the place of actual gradient following when picking a location to deliver a part.

The model of the system as a blueprint of parts, chained together with dependencies,

allows the assembly robots to look at the map, determine which parts are still needed at a

given time, and request that number of parts to the delivery robots. This implementation

does not change the delivery algorithm and helps prevent bottlenecks in spots where the

demanding mass for the completed structure and the demanding mass at that moment are

29

BROADCAST

DEMANDING MASS
PICKING UP

PART
ACKING

COMPUTING

CONSTRUCTION

LOCATION

RECOMPUTING

PARTITION

RECOMPUTING

DEMANDING MASS

ADD PART TO

STRUCTURE

Delivery Request Success

No remaining work or

 some neighbor has no work

Store new masses

Fail

Non-zero mass

Zero demanding mass

Init

Figure 4-7: The task planning event loop for the assembly robots.

different.

4.3.2 Assembly

The assembly algorithm, demonstrated as a finite state machine in Figure 4-7, adds to

the original algorithm similar systems as in the the delivery algorithm, including collision

avoidance and awareness of the local structure. We also completely replace the computa-

tion of the optimal edge to place next, 0and change the delivery mechanism from a direct

handoff to a passing of parts within the general vicinity of the assembly robot. In the origi-

nal algorithm we compute the least connected edge in our structure and add a part, and also

as the model does not consider collision it assumes there is always space for multiple robots

to perform a handoff. In our implementation we take advantage of a blueprint, and only

allow the placement of parts that both depend on no other parts to hold them up and that do

not prevent a robot from reaching the location of an unplaced part. Among these parts, the

optimal part is the one that most increases the number of placeable parts in the partition.

We also determine handoff points rather that requiring the delivery robot to directly access

the assembly robot inside the structure.

A structure is now represented as a blueprint of interdependent parts, where each part

maps to a node on both a directed graph representing the physical dependencies of parts

(with an edge from any part to any part that directly requires it to be placed) and an undi-

rected graph of the part’s proximity to other parts (with an edge between any two parts

30

within a robot’s radius of each other). We define a part p as active if it has no parents on

the directed graph and that a path exists from every part the robot is responsible for to the

edge of the map which does not pass through p. By assuming that the density of parts

is bounded, we can provably recompute the set of parts which is active in sublinear time

using discrete gradients. As the only parts which can be placed without adding imposable

constraints to the task are active ones, we only use active parts when computing demand-

ing mass, meaning the total mass of a partition can both increase or decrease significantly

after each placement. We uniquely weight the contribution of a part on the blueprint to

the demanding mass by the net change it would have on the size of the set of active parts

and break ties by assigning more weight to parts which would remove more constraints

from inactive parts, breaking further ties by preferring the centroid of the robot’s Voronoi

partition. The optimal part placement is determined by the active part with the greatest

weight, which means robots place parts in such a way as to allow more parts to be placed,

if possible.

4.4 Results

For testing platform, we use 2 assembly robots (labeled with robot 4 and 5) and 2 delivery

robots (labeled with robot 2 and 3) in a 5x5 meter rectangle. The testing platform also

involved a motion capture system to provide robot localization information and a GUI that

gathers all the activities with communication and displayed them. Below we discuss the

behavior of our robots over the course of these runs in terms of both our algorithm and

practical considerations. Note that the system is decentralized except for the locational

information from the Vicon motion capture system.

4.4.1 Test Scenario

For evaluation, a single blueprint is chosen demonstrating different features of a real sys-

tem and the number and locations of the assembly robots change for different runs. We

specialize the delivery robots further: one picks up truss parts only and one picks up con-

31

Figure 4-8: Snapshots of grasping. The arm moves along an arc to find a rough position of
a part and does fine search by radial motion. Grasping is done after confirming the part.

nector parts only. The supply dock for parts is located at position (0,0), however the parts

at the supply dock are moved around to test the robots’ ability to pick up reachable parts.

The robots could sense the different types of parts 100% of the time by communicating

with them over IR.

4.4.2 Robot Adaptation

In an ideal setup and execution, the delivery robots alternate between the two assembly

robots. To test adaptivity, we also run a variation in which one robot stops demanding parts

halfway through the test. This failure of the assembly robots causes the delivery robots to

adapt, delivering parts only to the remaining robot.

We ran the scenario with two assembly robots on the platform 12 times. All runs

produced the correct alternating delivery behavior. Both the joint delivery robot and the

truss delivery robot alternated targets and delivered to both assembly robots, seen in Figure

4-10. The delivery robots alternate targets in response to the demanding mass reported to

them by the assembly robots, shown in Figure 4-9.

We ran the same scenario as before 3 times with a simulated failure, in which one of

the assembly robots was taken off the map. Even when the assembly robot removed had

a higher demanding for parts, its failure resulted in the delivery robots delivering to the

remaining robot. In all cases, the communication between delivery and assembly robots

confirmed the deliveries and changed the demanding masses of the assembly robots. Over

32

0 10 20 30 40 50 60 70 80
4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Experiment time in minutes
D

em
an

di
ng

 m
as

s

Experimental
Assembly Robot Demanding Mass over Longest Test Run

Demanding Mass
for robot 4
Demanding Mass for
robot 5

Figure 4-9: The demanding mass of assembly robots, named robots 4 and 5, drops when-
ever a part delivery occurs. Delivery robots changed targets to whichever robot had the
highest demanding mass at the time. The unit of demaning mass is undimensional and
proportional to amount of the partitions.

all 12 test scenario runs, the 2 delivery robots completed 45/48 delivery attempts. Three

failed deliveries were the result of arm hardware failure on a single robot. A summary of

test runs can be seen in Table 4.3.

4.4.3 Run Time Empirical Analysis

Each delivery robot averaged 7 minutes for a round trip delivery, spending much of its time

dealing with the supply dock rather than the other robots in the system. The summary is

in Table 4.3. The robots spent a significant amount of time parked in the supply dock,

searching for parts: the robotic arm requires an average of 2.75 minutes (32% total time)to

search for and pick up the correct type of part. This large amount of time caused a backup

in the system: for all test runs in which both delivery robots ran at once, each delivery robot

spent an average time of 2.57 minutes per delivery waiting for the other delivery robot to

move out of the way.

33

Trial Runtime Avg. Success Failure
(MM:SS) Runtime

1 06:05 06:05 1/1
2 07:36 07:36 1/1
3 07:20 07:20 1/1
4 13:58 06:59 2/2
5 37:33 06:16 6/6
6 21:40 07:13 3/3
7 14:18 04:46 3/3
8 23:04 04:37 5/5
9 41:28 06:55 6/6
10 15:49 05:16 1/3 gripper weakened
11 71:05 05:55 11/12 dropped a part
12 23:17 04:39 5/5

Total 04:43:13 06:54 45/48

Table 4.3: Summary of Robot Delivery Test Runs

Figure 4-10: Snapshots of a test run of the even demanding mass delivery scenario. As-
sembly robots begin positioned at 2 different points of highest demand for parts. As the red
connector parts are delivered, the maximum demanding mass for the entire map changes,
causing the delivery robot to change delivery targets, first to robot 5, then to robot 4.

34

4.5 Identified Next Step

Translating this decentralized to a robotic platform revealed several areas where our as-

sumptions from simulation needed to be reconsidered. The difficulties in converting from

a theoretical system to a physical one fell into two major categories: assumptions about

robots and assumptions about the assembly. The need for holonomic robots required new

algorithms to be implemented to work around those assumptions. The lack of considera-

tion of the physical constraints of the object being assembly mid-construction required us

to place parts in patterns on the ground rather than actually build structures.

35

Chapter 5

Considering Physical Constraints

The experiments in chapter 4 exposed a need to build knowledge of the physical constraints

on the mid-assembly stability of the target structure into our algorithm. We also noted the

equal-mass partitioning requiring a continuous mass function despite the discontinuities

inherent in assigning a mass to each individual part in an assembly. One of the researchers

working on the experiments outlined in chapter 4 takes a first pass at these issues in [24]

by adding a “reveal” function that hides demanding mass of parts and forces construction

to occur in a predetermined order, and creating a “graph based Voronoi partition” scheme.

This chapter presents solutions to both of these problems by describing a discrete equal

mass partitioning algorithm and a density function that allows parts to be prioritized in a

fashion that guarantees convergence of the system and tends toward high parallelism.

5.1 Overview of Construction Algorithm

We are given a team of robots, a blueprint of a desired structure, and a construction region

Q. A subset of n of the robots are specialized as assembly robots and the rest are specialized

as delivery robots. The blueprint describes the location, type, and physical requirements

for stability of each object (“part”) in the structure. The robots are given a local section of a

blueprint, and have full knowledge of the progress of the construction of the target structure

in the area surrounding them and their neighbors. We describe an algorithm that coordinates

36

the construction of a given structure while maximizing parallelism across assembly robots

and conforming to the physical constraints of the structure. The algorithm is guaranteed

to construct the structure in an order that is feasible in that it does not prevent any sub-

assembly from being completed.

This problem formation differs from previous work in coordinated construction dis-

cussed in chapter 3 and covered in ([25, 2]) in that we introduce knowledge of physical

constraints on assembly and delivery. We consider two new constraints: the requirement

that each part must be capable of staying in place once set (physical dependency), and the

requirement that a delivery robot must be able to reach both the source and assembly robots

at all times (reachability).

We represent these constraints in the blueprint by defining parts as vertices connected on

two graphs: a physical dependency graph Gp(V,Ep), and a reachability graph Gr(V,Er).

We define Gp by placing a directed edge (vi, vj) ∈ Ep between any vi and vj where vj

cannot be stably placed unless vi already has been, regardless of the state of any other part.

We assume that any part is placeable iff all of its parents in Gp have been placed.

We define Gr by placing a directed edge (vi, vj) ∈ Ep between any vi and vj where

a robot at the location of vj could access vi, regardless of the state of other parts in the

systems.

Without loss of generality and for ease of exposition, we assume that there is some

constant upper bound c on the maximal degree of any vertex in V .

Algorithm 3 outlines the construction algorithm from a global perspective, and is a

reproduction of the foundational algorithm (algorithm 1) presented in chapter 3 with the

partitioning step omitted, as task allocation is now computed in real time (algorithm 3 line

4 and section 5.2). The three primary functions performed by the robots are partitioning,

delivery, and assembly. Assembly robots are deployed into Q, and the partitioning con-

troller (Section 5.2) ensures that each assembly robot i has some partition of Pi ⊂ V that

is spatially compact and that each partition has roughly the same amount of work assigned

to it at all times. Delivery robots constantly deliver parts from some source to the assembly

robots, using a priority function to determine the best place to deliver each part within a

37

local region (Section 5.3).

Algorithm 3 Construction Algorithm
1: Deploy assembly robots in Q
2: repeat
3: delivering robots: deliver source components to assembling robots
4: assembling robots: assemble the delivered components while constantly updating

partitions
5: until task completed or out of parts

5.2 Equal Mass Partitioning using a Discrete Approach

In our problem formulation we represent each part in the target structure as a point, which

is reasonable given the discrete nature of parts. We define the demanding mass of a part

as a measure of its priority in placement order, where the mass of a part is 0 if a part

is unplaceable or already placed and positive otherwise (this is discussed further in section

5.3). By partitioning based on this mass function, we can allocate roughly the same amount

of reachable, actionable work to each robot. We repeat this algorithm continuously during

runtime to maintain an equitable partitioning of Q as masses change dynamically while the

structure is built.

A trade-off of the significant increase in fidelity we get by updating our model from a

geometry to a blueprint is a change in the nature of the density of the Q. The density of

Q is used by most coverage algorithms, including canonical Lloyd algorithms for equipar-

titioning, to perform gradient descent to converge to equal-mass partitions. Our blueprint

forces the density of Q to be a dynamic summation of scaled Dirac delta functions, which

has a gradient of either zero or infinity at all points, meaning we can not use the class of

deployment algorithms that depend on Voronoi partitioning.

The problem of finding a equal mass convex partitioning of a set of points is NP-

complete (proof provided as Appendix A). Here we present an algorithm that efficiently

finds a local minimum of convex partitions. That is, in a stable configuration found by

this algorithm no point in the convex hull of a partition can be placed in another partition

38

without either requiring a non-convex partition to exist or increasing the disparity between

two hulls

5.2.1 Algorithm

Vertex swap, which we present a potential solution to this problem in [24], works on a graph

rather than in Rn, and requires multi-hop communication. In order to use this algorithm, we

need to define a graph that connects the set of positive mass points. If we create a relatively

sparse graph we introduce unnecessary assumptions which limit which points can be in

the same partition. If we create a well-connected graph we introduce the assumption of

excessively large communication radii as neighbors are defined by edges in the graph rather

than Lp distance. We have developed a equipartitioning algorithm that does not require a

graph connecting points, uses only local communication, and has lower complexity than

vertex swap.

We identify partitions that are spatially compact and approximately equal mass, but as

stated above Voronoi partitioning and vertex swap are not viable options. The problem of

partitioning a set of point masses in Rn into non-intersecting, convex, equal-mass partitions

is NP-hard, even in R2 (Appendix A). We present the hull vertex swap algorithm (Algo-

rithm 4), an efficient distributed method for approximating equal-mass partitioning using

only single hop communication.

Hull vertex swap converges to a convex partitioning of the points v ∈ V distributed

across the space Q into a set of partitions. We allow each partition Pi, i ∈ [1, n] to “steal”

points from its set of neighbors NPi
. The focus of the algorithm is to determine which

vertices can be transferred from one partition to another without creating an intersection

between the convex partitions, and which vertices can be stolen to effectively converge to

a solution that locally maximizes our measure of equality.

We now discuss how to determine which vertices can be stolen without introducing

intersections between partitions. We then present how to compute which vertex is best to

steal, if any, and finally present a proof of convergence and experimental data. To compute

which vertex to steal, each robot first computes the convex hull of its partition P; then for

39

Figure 5-1: Test to identify stealable vertices. The triangles with bold outlines mark the
region that would be added to P due to a trade of a vertex. (left) Adding the vertex would
cause a collision between two polygons. (right) This vertex would be considered a valid
candidate to trade.

each vertex vi in the hulls of its neighbors, it considers the region that would be added to

the polygon defined by the convex hull of P if vi were moved into P . Any vi that would

not create an intersection between two polygons if added to P is considered a stealable

vertex. The area added to the region can be quickly tested for intersection by finding the

triangle formed by the tangent rays between P and vi and testing the edges of each of the

hulls inNP for intersection with that triangle (see Figure 5-1). In higher dimensional cases

this extends to the pyramid formed by tangent planes.

Algorithm 4 Partitioning Algorithm
1: Deploy into Q at random pose pi

2: P ← {v|(||pose(v)− pi|| < ||pose(v)− pj||)∀j 6= i}
3: loop
4: compute convex hull of P
5: update NP

6: X ← {v|v ∈ NP , v is stealable}
7: i← argmax

vi∈X
(∆HP(vi))

8: if ∆HP(vi) > 0 then
9: communicate to Nj : vi ∈ PNj

to remove vi
10: P ← P ∪ vi
11: end if
12: end loop

We measure equality using a cost function H from [21] with a constant distance func-

40

tion. Given that each vertex v has a mass φ(v):

MP ,
∑
v∈P

φ(v) (5.1)

HQ =
∏

i∈[1,n]

MPi
(5.2)

Without loss of generality, if we consider moving a vertex v fromP1 toP2, we can compute

the change in mass:

∆HQ =

(
n∏

i=3

MPi

)
(MP2 + φ(v)) (MP1 − φ(v))−HQ (5.3)

When comparing two potential exchanges of vertices, we only need knowledge of the

partitions that will change in order to compute both the sign and relative magnitude of our

deltas. We therefore need only local knowledge to determine which vertex, if any, is best

to trade. We can therefore compute a scaled local ∆HN of moving some v from some

neighbor’s partition Pi to Pself with:

∆HN =

 ∏
Pk∈N∧Pk 6=Pi

MPk

(φ(v)(MPi −MPself
− φ(v))

)
(5.4)

∆HN =
∆HQ∏

P6∈NPself
MP

(5.5)

5.2.2 Analysis and Experiments

Convergence

Theorem 1 Algorithm 4 will converge to a local maximum.

Proof 1 We know that the denominator in equation 5.5 will be unchanged by a vertex being

41

stolen and that therefore

argmax
vi∈X

(∆HN (P ← vi)) = argmax
vi∈X

(∆HQ(P ← vi)) (5.6)

so each stolen vertex will result in an increase in HQ. The value of H is bounded from

above and all |∆H| is bounded from below, so by induction the algorithm must converge

to a local maximum.

Runtime

Theorem 2 Update at each step of algorithm 4 runs in O(||N ||d + ||N ||||P||) time.

Proof 2 Consider a single step of algorithm 4 running on a robot in Rd. Finding a trian-

gle or cone takes O(||P||) time. Checking for intersections takes O(||N ||d−1). This check

needs to be run on O(||N ||) candidate points [28]. Computation of each ∆H takes con-

stant time, so the computation of candidate points dominates this function. The runtime per

step is therefore O(||N ||(||N ||d−1 + ||P||)) = O(||N ||d + ||N ||||P||).

Because only the hull is considered, this is often much faster in practice.

Experiments

We ran the partition algorithm on several hundred randomly generated sets of pointmasses

with random mass. Point location was sampled from either a uniform distribution or 2D

Gaussian. The partition masses converged on all pointsets such that their standard devia-

tion was less than twice the average mass of a point. No partitionings contained outliers

after convergence, which suggests that most local maxima are good approximations of

equal-mass partitioning (see Figures 5-2 and 5-3). The simulations took 15.5 minutes in an

environment with 500 point masses with 12 robot state machines each running in a separate

thread on a single 1.2 GhZ core. Running the same environment with 5 robots converged in

2.5 minutes, and with 5 robots and 250 points the system converged consistently in under

45 seconds.

42

Figure 5-2: Data from running partitioning algorithm. Initial configuration (top left), con-
figuration after 6 time-steps (top right), after 6 time-steps (bottom left), and after 26 time-
steps (bottom right) on a set of point-masses with random location and mass. Shade is a
function of total mass of a partition.

43

Figure 5-3: Total mass of each partition over time during a random run of the partitioning
simulator.

5.3 Delivery and Assembly with Part Ordering

Delivery robots repeatedly choose random assembly robots and deliver the part with the

highest demanding mass inside the chosen assembly robot’s partition. The assembly robot

waits for a delivery and then performs whatever actions are necessary to attach the part to

the main structure.

Algorithm 5 Delivery Algorithm
1: loop
2: Move within communication range of random assembly robot r
3: Receive highest priority vertex in Pr from r
4: Bring corresponding part from part source to r
5: end loop

5.3.1 Algorithm

In our definition, parts with 0 mass violate either physical or reachability constraints. Be-

tween any two parts with non-zero mass, the part with higher mass is given priority in

44

Algorithm 6 Assembly Algorithm
1: Start partition algorithm (Alg. 4)
2: loop
3: for v ∈ Pself do
4: if v reachable from outside construction site then
5: dist(v)← 1
6: else
7: dist(v)← 1 +min({dist(u)|(u, v) ∈ Er})
8: end if
9: end for

10: yield until delivery
11: receive delivery of part v
12: place v and signal neighbors
13: for u ∈ all children and parents of v do
14: update φ(u) (Equation 5.23)
15: for w ∈ all children and parents of u do
16: update φ(w)
17: end for
18: end for
19: end loop

placement. Given this planning algorithm, the mass function φ(·) dictates the order in

which parts are placed. We need a mass function with the following properties:

• no part placement violates global constraints

• after a part is placed the number of placeable parts tends to increase or remain con-

stant

• the creation of bottlenecks and hallways is avoided if possible

• changes to the local density function can be efficiently calculated and updated using

only local information

The precise order in which parts are placed is partially a function of the assignment of

partitions and availability of parts, which are respectively non-deterministic and outside of

our control. The ordering should optimize over some set of local metrics. To build this

function, we present mass functions that each satisfy one of our goals and then describe a

45

combined definition. In each definition we represent the placement of a part by removing

the vertex vi corresponding to the part placed and also removing any edge going into or out

of vi from both graphs.

Before defining our mass function we need to make a modification to the reachability

graph. We need local information about the global property of reachability, and one way to

do this is to modify reachability into a DAG. We do this by defining G′r(V,E
′
r) such that:

E ′r , {(u, v)|(u, v) ∈ Er ∧ dist(u) > dist(v)} (5.7)

We are now ready to begin defining the mass function φ. First we define the global con-

straints formally: any vi is placeable iff it will be physically supported and not render any

unplaced parts unreachable. We define two boolean variables ξp(v) and ξr(v) to represent

this criteria.

ξp(v) = (deg−Gp
(v) 6= 0) (5.8)

ξr(v) = (∃j : ((vj, v) ∈ E ′r) ∧ (deg+G′
r
(vj) = 1)) (5.9)

ξp indicates that a part will not be physically supported if its indegree is anything but

0; all the parts it depends on for support must already be placed. ξr indicates that the part

should not be placed if doing so would prevent delivery robots from reaching another part;

that is, if placing a part blocks a unique exit it cannot be placed.

φc(v) =

 0 ξp(v) ∨ ξr(v)

1 otherwise
(5.10)

Because the ordering of parts is defined by a set of DAGs, any mass function that obeys

the constraints above and sets all other φ(vi) to a positive value will terminate if the problem

is solvable. This is sufficient to have a system that will build a structure without violating

any physical constraints, however with binary mass placement order will be essentially

random.

46

The remaining mass functions allow behavior to be tuned to tend towards placement

that allows for better parallelism of assembly tasks and access to the structure by delivery

robots.

Before presenting these functions, we introduce the following scoring function and

briefly discuss its properties. Given some function f : x → Z+, and some candidate sets

Xi with the property ||Xi|| ≤ cX∀i:

score(f(·), X) =
∑
x∈X

(
2f(x)

)−cX (5.11)

This function takes advantage of the properties of geometric series to provide a function

that will, given two candidate sets X1 and X2, give a higher score to the set with the most

values generating the lowest value of f . That is, if we identify the lowest value of f(x), y

which is generated by a different number of members of the two sets:

y = min
i
{i : ||{x ∈ X1|f(x) = i}|| 6= ||{x ∈ X2|f(x) = i}||} (5.12)

then score has the property that

score(f,Xi) > score(f,Xj) (5.13)

implies

||{x ∈ Xi : f(x) = y}|| > ||{x ∈ Xj : f(x) = y}|| (5.14)

For example: consider two nodes on a directed graph with sets of children X1 and X2,

and a function f(v) which returns the outdegree of a node. The node with more children

that have outdegree 0 will have a higher score (score(f,Xi)). In the case of a tie, the node

with more children with outdegree 1 will have a higher score. After that ties are broken by

the number of children with outdegree 2, and so on. We use this function extensively in our

definitions.

47

First we define a function that will help to place parts such that we first maximize the

number of parts still available to be placed (i.e., reveal as many new parts as possible).

A reasonable function could rank parts first by the number of physical dependencies they

satisfy. We can represent this ranking with the score function:

φp(vi) = score(deg−Gp
, {vj|(vi, vj) ∈ Ep}) (5.15)

Similarly, we would like to place blocks that are least likely to cause a bottleneck first.

By rating blocks by the number of different ways to reach their children we can place

preference against restricting high-traffic paths. We also would like to tend toward placing

parts in harder-to-reach locations first, so we need to define a slightly more complex test

function g(vi) = max
j

(deg+G′
r
(vj))− deg+G′

r
(vi) .

φr(vi) ∼ score(g, {vj|(vj, vi) ∈ E ′r}) (5.16)

We also would like to tend toward working in areas far from the easily reachable edge

of the system first (i.e., at the end of a hallway). We can use the distance function from

Algorithm 6 to measure this:

φr(vi) ∼ dist(vi) (5.17)

To combine these two statements we normalize the distance function to between 1
2

and

1. The score function behaves such that multiplying by a half is the equivalent of redefining

the input function f ′(·) = f(·) + 1. In this case doing so would effectively lower the

outdegree of each of a node’s children by 1, thus lowering the node’s priority. This allows

us to scale φ by distance without breaking the tiered behavior of the score function.

kdist(vi) =
dist(vi)− 1

2(max(dist(v)∀v ∈ V, 2)− 1)
(5.18)

φr(vi) = kdist(vi)score(g, {vj|(vj, vi) ∈ E ′r}) (5.19)

48

Finally, in combining these three measures of mass, we need to rescale our masses to

allow comparison between φr and φp. To achieve this we introduce two scaling factors: β

which rescales the range of in-degrees of nodes in E ′r to match that of Ep, and γ which can

prioritize reachability or physical dependency as required by the task. The exact tuning of

these functions varies depending on the capability and number of each class of robot, and

this relationship is left as future work.

β =
max
vi

(deg−Gp
(vi))

max
vi

(deg+G′
r
(vi))

(5.20)

γ ∈ {−1, 0, 1} (5.21)

If we define g′(vj) = β(g(vj) + γ), we can introduce those scaling factors to the reach-

ability function by substituting into equation 5.19, which will normalize it to resemble the

physical dependency function:

φ′r(vi) = kdist(vi)score(g
′, {vj|(vj, vi) ∈ E ′r}) (5.22)

We can now combine equations (5.22), (5.15), and (5.10) to define our combined mass

function for use by the controller.

φ(vi) = φc(vi)(φ
′
r(vi) + φp(vi)) (5.23)

5.3.2 Runtime

Upon the placement of a part, at most c parts will have a change of degree, which in turn

means only c2 parts have a potential change in mass. This allows constant time for a robot

to update all masses after a part has been placed.

49

Figure 5-4: Part placement while building a solid cube using (top) uniform mass and (bot-
tom) ordering. Note that without the ordering algorithm, work in the front occurs first (top
middle), making it harder for delivery robots to reach subassemblies in the back. Also
note how more of the stacks of blocks in the top right have reached their maximum height,
leaving less opportunities for parallelism. A more detailed discussion of a simulator trail is
given in Section 5.4.1.

Figure 5-5: The average number of parts with positive mass across time over 50 runs of
building a solid cube at the end of a hallway with 5 assembly and 4 delivery robots. (top)
With uniform mass on placeable parts and (bottom) using the proposed algorithm.

50

5.3.3 Convergence

Theorem 3 The controller outlined in algorithms 5 and 6 will converge to a complete

structure if possible.

Proof 3 Our constraints are described by two DAGs. The mass function we describe here

gives positive mass to all vertices with no unplaced parents, which by definition describes

and follows a valid topological ordering of both Gp and G′r, and will therefore converge

without violating either sets of constraints.

5.4 Experiments in Simulation

We have implemented Algorithm 5 and 6 in simulation and evaluated them on several con-

struction test cases. We used two structures: one which demonstrates the properties of

the controller in a high-stress scenario, and one which demonstrates a structure that might

be encountered in actual applications. Each environment was tested at least 50 times for

each possible permutation of between 1 and 5 delivery and assembly robots on three en-

vironments - an empty box and solid box at the end of a hallway (Figure 5-4: complex

reachability, relatively simple physical dependencies) and a model airplane (Figure 5-6:

complex physical dependencies, less complex reachability). All runs completed construc-

tion without violating constraints. We rated each run on availability - the number of parts

ready to be placed - and throughput - the maximal number of delivery robots that could

make a simultaneous delivery.

As a baseline, we compared the results of the mass function (equation 5.23) with the

minimal constraint (equation 5.10). We saw a clear performance advantage to our algo-

rithm in creating opportunities for parallelism (Figure 5-5). The throughput in our example

situations did not exhibit statistically significant deviation from the uniform mass functions

until late in each run.

51

(a) (b) (c)

(d)

Figure 5-6: The controller running on three assembly and two delivery robots building a
model plane in simulation, which has complex physical dependencies and relatively simple
reachability constraints. Parts are color-coded by the robot that placed them.

52

5.4.1 Simulation Example: Model Plane

As an example of the behavior of the system we considered building a model plane with

complex physical dependencies and a solid block which has complex reachability con-

straints. For illustration, we have colored parts differently if they were placed by different

assembly robots. In this example, there are several constraints:

• The scaffolding must be completed before panels are placed over it

• Scaffolding must be built ground up, and have horizontal struts holding it up before

it is more than 3 struts tall

• Wings require stable scaffolding before they are built, and the attachment point of

main wing supports is unreachable after panels have been placed over the scaffolding

around the connection point.

We initialize the system with three delivery and two assembly robots. The plane blueprint

consists of 686 parts and 2402 edges which fully represent the dependencies described

above. The dependencies were precomputed by brute force, which took slightly over one

second on a 2.67 GHz processor.

In the screenshots from the simulator in Figure 5-6, these constraints are followed,

and each assembly robot does roughly the same amount of work. In (a) we see an empty

blueprint as the assembly robots are deployed. In (b) construction begins, with each of

the three partitions filling up with roughly the same amount. In (c) the scaffolding has

been mostly completed before panels are added, which maximizes the amount of potential

work to be done and would allow for efficient parallelism if more robots were added. (d)

shows the finished product, a completed airplane. The three robots placed 220, 232, and

234 parts respectively over the course of this example. It is also notable that when the

robot placing dark grey parts completed its section of the assembly task it relocated to the

still incomplete tail and resumed construction there, which was a direct result of the active

partitioning algorithm.

53

Chapter 6

Feasability Experiments

We reimplemented algorithm 1 using the subroutines described in chapter 5. We consider a

structure with a single class of parts, present a platform-independent implementation of our

algorithm that will run on any robots that can be run by properly configures ROS nodes, and

demonstrate it on an updated version of the platform from chapter 4. In ?? we demonstrate

the generality of these algorithms by repeating the experiments on KUKA-brand youbots

with more complex structures.

6.1 Software

Our software is implemented on top of the ROS infrastructure [32]. ROS (Robot Operating

System) is a communication layer that allows the development of “rosnodes” which can

run and communicate with each other on a single machine or between robots. We use

this system to define rosnodes which to handle the different partitioning, ordering, and

high level behavior tasks using generic localization data and then pass it off to any robot

capable of manipulating parts appropriately (see figure 6-4). For ease of implementation,

we changed some implementation details when implementing our system, as outlined in

6.1.

For working with our physical platform, we implemented robot drivers for the iRobot

Create for motion and lynx motion crust-crawler arms for grasping. We use the Vicon

54

Figure 6-1: The “box” and “wall” shapes built in our experiments. “box” tests the ordering
based onphysical dependancies, “wall” tests maintanance of reachability.

Figure 6-2: The new platform uses a different gripper and no longer has the augmented
chassis, but uses the same technologies as the previous iteration.

55

Aspect Theory Implementation
Delivery Gradient descent to local as-

sembly robot with highest de-
manding mass

Delivery to robot with highest
demanding mass

Assembly Abstract assembly task Concrete assembly task: part
placement

Partitioning Discrete partitioning with hull
vertex swap

Discrete partitioning with hull
vertex swap

Ordering Part priority calculated in real-
time based on dependencies,
reachability, part supply, and
assembly time

Part priority calculated offline
based on dependencies, reach-
ability, and part supply

Communication Neighbors only (single hop) All robots

Table 6.1: Summary of differences between our theoretical algorithms and system imple-
mentation.

desciption of blueprint
and (possibly incorrect)

belief of global state

planning algorithm

partition algorithm

inter-robot
communication

robot and arm drivers

parser for
position information

Figure 6-3: Dependency chart of software. Each node represents a ROS node, each arrow
shows a dependency from parent to child. Square nodes must be implemented specifically
for an environment, oval nodes are generic.

56

Figure 6-4: Auto-generated graph of information flow during a three robot experiment
between nodes. Running our communication layer on a single machine increases the com-
plexity of information flow, but allows for a central log of a distributed system

localization system with a UDP broadcast which we catch on each robot with a ROS node

wrapper. Communication is handled by an independent central machine, which can allows

us to monitor all communication and commands for logging.

6.2 Platform

Having observed the large delays at the source in the previous iteration of experiments, we

chose to treat the problem of retrieving parts from a source as solved to allow a stronger

focus on the task of construction. This removed the need for the smart part technology

for these experiments, so our parts are significantly lighter and have no need for batter-

ies. The removal of smart parts introduces the need to rely on the localization system to

communicate where the now “invisible” parts are located. This reduced the reliability of

grasping tasks, and so we allowed intermittent human intervention to nudge parts. In order

to increase accuracy in the construction of the projects, the floor and parts are magnetized,

57

Figure 6-5: Our experimental platform while building a box.

which provides slightly over two centimeters of compliance for part placement. We also

made several changes to the form of the chassis to ease access to the internals of the robots

for maintenance.

6.3 Results

Most of the differences between theoretical robots and actual robots noted in chapter 4 are

present in a system that notes part ordering, and so those observations and solutions largely

remained unchanged for these experiments. Our assumptions about the structure itself did

not require any fixes to translate into physical or simulated execution, which was a promis-

ing validation of the effectiveness of the part ordering scheme. Because we dealt with small

sets of parts and robots in these experiments the partitioning algorithm did not show much

change, as the part ordering system rarely showed more than two high priority parts in any

shape, which led to an obvious correct partitioning, which our algorithm converged to in a

single iteration of the swap action (presented in section5.2).

Though the changes to the platform improved runtime (average delivery time fell under

3 minutes), our results did not provide any new knowledge not presented in chapter 4.

The compelling results of our experiments were the 8 successful constructions of the

box shape and 4 successful construction of the wall shape. This work provided validation

of our approaches ability to autonomously conform to stability and reachability constraints.

58

Figure 6-6: The demanding mass of each robot over the construction of a box. (Labels
correspond to states symmetrical to those in figure 6-8, though they may be rotated by 180
degrees)

6.3.1 Walkthough of single iteration

For sake of illustration we will review the system state over an instance of the system

constructing the “box” object. Figure 6-8 shows the state of the system over time. The

assembly robots constantly repartition the parts that can be placed, based on their demand-

ing mass. The total demanding mass for each robot is plotted in figure 6-6. We can see

that after the first part is placed (figure 6-8.b), the demanding mass of one robot goes to 0

(as there is only one placeable part) and the other increases slightly (as the remaining part

will make more pieces available, which increases its mass). After the next placement an

assembly robot’s total mass spikes as two parts are added to its partition, and then quickly

levels out as the assembly robots equalize their partitions by swapping a part. This repeats

at each level of the “box” structure. On the final layer, the mass does not increase as no

new parts will be made available after a placement.

59

Figure 6-7: A rendering of system state over time. Images generated by the simulator from
section 5.4 using the blueprint from the physical platform experiments.

Figure 6-8: Even with feedback from vicon, our grippers introduce a fair amount of error.
After a layer of pieces is placed (as in this figure) we will manually adjust the pieces to be
more precisely located.

60

Shape Valid Manipulations
NotesPlacements (Aided/Total)

4-part Box 4/4 3/16
4-part Box 4/4 3/16
4-part Box 4/4 4/16
4-part Box 4/4 3/16
4-part Box 4/4 4/16
8-part Box 8/8 9/32
8-part Box 8/8 8/32
8-part Box 8/8 9/32 Replaced delivery robot battery mid-run
8-part Box 8/8 /32 2 delivery, 2 assembly
8-part Box 8/8 /32 2 delivery, 2 assembly

Wall 4/4 1/16
Wall 4/4 5/16
Wall 4/4 3/16
Wall 4/4 4/16

Table 6.2: Summary of Robot Assembly test runs using 1 delivery and 2 assembly robots
unless noted otherwise.

61

Chapter 7

Extended Experiments

Using the same algorithms tested in 6, we repeated the experiments using new physical and

software control systems. With the higher reliability. In these tables we also introduce the

“utilization” metric, which measures the amount of experiment time each robot spends ac-

tively performing a task. We consider this a good proxy of the efficiency of our algorithms,

where 100% utilization suggests for either class of robots suggests that either manipulation,

navigation, or the relative populations of robot class are the highest-order constraint on our

system.

7.1 Implementation

We replaced our roomba with mounted gripper platform with the KUKAyouBot (seen in

figure 7-1). The robots are equipped with an internal computer running Ubuntu Linux,

allowing for easy porting of our control software. We replaced all navigation and control

modules from section 6-4 with equivalent packages for the KUKA-youbots, and imple-

mented a handoff rather than passoff for the interaction between delivery and assembly

robots. We augmented the youBots with WNCE2001 Wifi adapters, and migrated our mes-

saging system onto the standard ROS messaging libraries.

62

Figure 7-1: Side view of the KUKA YouBot. The holonomic base allows for omnidi-
rectional movement, while the five d.o.f. arm provides high-fidelity maniputation in the
workspace around the robot

7.2 Experiments

7.2.1 Results (two robots)

This new task implemented the “box” design with six layers, as seen in figure 7-2. This new

design introduced stronger stability and reliability constrainst from the experiments in the

previous chapter, while maintaining similar ordering constraints. With only one partition,

this experiment does not test the partitioning portion of our algorithms, making this largely

a test of the transposition to a new physical system. All other processes follow from chapter

6. The assembly utilization hovered just over 80%, largely due to the distace between the

depot and the construction site requiring long trips by the delivery robots.

Over our three trials there were no notable system failures and the struction was built

without issues in stability, as outlined in table 7.1

63

Trial Runtime Assembly Delivery Success
(M:SS) utilization utilization (Y/N)

1 19:32 83.1% 58.6% Y
2 20:09 81.3% 69.7% Y
3 22:17 84.5% 51.5% Y

Avg 20:39 83.0% 59.9% 100%

Table 7.1: Summary of two-robot assembly trials for a tower.

Figure 7-2: An assembly robot places the final part on the three-dimensional tower. The
tower is composed of six layers of the box design simulated in figure 6-8. This tower is the
result of trial #1 from Table 7.1.

64

Trial Runtime Assembly 1 Assembly 2 Delivery 1 Delivery 2 Success
(M:SS) utilization utilization utilization utilization (Y/N)

1 9:16 84.8% 90.1% 95.4% 86.3% Y
2 8:53 88.9% 87.3% 96.6% 96.1% Y
3 8:46 89.9% 88.7% 93.0% 94.2% Y
4 10:29 83.3% 86.8% 90.9% 94.4% Y
5 12:34 87.8% 87.9% 82.0% 92.7% Y
6 10:33 87.2% 87.9% 96.7% 93.9% Y
7 8:42 89.7% 87.2% 97.9% 94.0% Y
8 11:23 93.0% 84.9% 81.5% 93.7% N

Avg 10:05 88.1% 87.6% 91.8% 91.9% 87.5%

Table 7.2: Summary of four-robot assembly trials for a tower.

7.2.2 Results (four robots)

Our final experiment reintruduces partitioning constraints to our new physical system. Over

8 iterations, we build the 6-layer “box” structure using two assembly and two delivery

robots. The utilization was much higher across the board, and the runtime improved more

than twofold. We suspect this is due to decreased waiting times with two delivery bots

running simultaneously, despite a longer time per part placement but did not log metrics on

these parameters as they are largely system specific. The results from this trial are outlined

in Table 7.2

65

Chapter 8

Conclusion and Future Work

This thesis reviews work in distributed construction, experimentally explores existing work

and identifies areas where extension would be most effective, and then provides those ex-

tensions by describing distributed algorithms for part placement and ordering which ensure

that structures stay stable and reachable while under construction. It then demonstrates the

effectiveness of those algorithms in practice.

8.1 Summary of Contributions

This work presents a system for describing distributed constuction tasks that takes into

account the physical constraints of the structure and the construction system, provides al-

gorithms for constuctruction within that constraint model, and demonstrates the efficacy of

these algorithms in a

In chapter 3 we formalize a framework for considering construction as a series of dis-

crete tasks tightly linked with several topological dependancies. This is a divergence from

the more generally used methods of treating construction as either a single premade plan

(ie, [16]) or a continuous field of “work” (ie, [2, 1]), and allows for a more direct mapping

from physical systems to algorithms and proofs of correctness at the cost of heightened

complexity.

In chapter 5, we re-constuct distributed construction algrithms to work under this more

66

accurate and constrained system. First we modified algorithms for equal mass partitioning

to maintain correctness under desnsity functions with point-discontinuities. Next, using

this partitioning function, we describe a class of functions that guartunees correctness and

completability when possible in a physically constrained construction system, and describe

a heuristic function that is a member of that class for use in experiments.

In chapter 4 we present an experimental platform for testing distributed construction

algorithms and use it to test our foundational work by Yun et. al. Having demonstrated

the efficacy of both our test platform and foundational work, the chapter 6 we test the

algorithms defined in chapter 5.

Finally in chapter 7, we run our paritioning and assembly agorithms on higher-complexity

structures with a homogenious team of robots. The authors of [29] use our work effectively

to control a heterogeneous group of robots in their experimental setup.

8.2 Lessons Learned

Each increase in the resolution of a simulation introduces new complexities that are easy to

overlook, and so the transitions between high level simulator down to a hardware platform

provided many opportunities to discover potential problems with each algorithm. The ac-

tual transition to hardware introduced the problem of keeping hardware operational. Our

first iteration required four batteries per robot and one per part, meaning to run an exper-

iment one needed to check the charge of 24 batteries. It also used three different wireless

communication protocol, an artifact of the constraints introduced by trying to run three

thesis projects on one set of robots. With hundreds of cables, hand-soldered boards, and

dozens of batteries, the chances of some part of the system failing dominated that of an

algorithmic issue and made experiments a chore to prepare for. My second iteration used

only 9 batteries, an improvement that allowed for several experiments to be run back to

back, and we were able to meet some goals we had originally thought unattainable with

our hardware. Striving for minimal complexity in all things makes loftier goals reachable.

67

8.3 Future Work

Work with HRI including skilled untrained laborers in the assembly process will also need

to be explored before this platform is ready for practical implementation. Adapting to

changing availability of different classes of parts and an extension to the algorithms pre-

sented in this thesis to avoid deadlocks waiting for parts with limited availability would

also be an interesting exploration.

Our experiments solve the problem of observing location and structure state using an

external localization system. Future work should consider both introduce a more realistic

model for sensor constraint, and adapt not only for robot failure, but for unexpected ex-

ternal mutations in the target struction, such as from human intervention or damage to the

structure during construction.

Finally intermediate structures (such as scaffolding or component construction) are of-

ten neccessary in complex construction tasks, and a fully general planner will need to in-

troduce these non-permanent steps in construction into its planning algorithm.

68

Appendix A

Complexity of Equal-Mass Convex

Partitioning of Pointmasses

One of the algorithmic contributions of this thesis is a distributed controller for partitioning

clouds of point masses into equal mass convex partitions. This controller find locally opti-

mal, rather than globally optimal, partitionings. We justify this by claiming that the task is

NP- complete. The appendix presents a proof of that fact. The properties claimed for each

widget can be confirmed with a simple brute force attempt at equal- mass partitioning.

We define Equal Mass Convex partitioning of point masses as follows: given n point-

masses, form m < n partitions such that each partition has a total mass of
∑

n mass(n)

m
and

is convex.

Lemma 4 Equal Mass Convex partitioning of point masses is in NP

Proof 4 It is easy to see that verification can be done in polynomial time. Given a can-

didate partitioning, for each partition, compute the sum of the point masses (there are at

most n) contained in that partition. If all partitions are equal then the partitioning is a

correct partitioning, in all other cases it is not. Each point is visited once, giving a runtime

of O(n) ≤ O(nk).

Lemma 5 Equal Mass Convex partitioning of point masses is NP-Hard

69

Proof 5 We show this by reducing BSAT. The main intuition of this proof is that a decision

of how to partition a subset of points can cause a chain reaction in the way partitions are

assigned. We use these chain reactions as signals and describe how to build wires and

logic gates out of sets of points. For convenience, I use N as shorthand for the mass of a

wall-formed partition, and set m appropriately at the end such that N =
∑

n mass(n)

m
. We

also will only use pointmasses with positive mass in this reduction.

Consider the four pointmasses below. Given an m of 2, there are only two possible

valid partitionings. We could treat this as a Boolean variable, with one value assigned to

each possible partition.

p-1

 1p-1

1

We can then build chains that carry that variables value. Effectively, a variable is

represented by creating a situation where only one of two pointmasses will be available to

include in a partition.

Because partitions must be convex, if three parts are co-linear, the outer two cannot be

in the same partition unless the central point is as well. Because this reduction uses only

pointmasses with positive mass, if the central point has mass N , the outer points cannot be

in the same partition.

Using this property, we can construct an identity, crossover, NOT, and AND gates. Each

gate takes the removal of one of each pair of “input pointmasses” as input, and omits one

of the “output pointmasses” as output (assuming some other gate will use it as input). The

correctness of each gate was confirmed by exhaustively constructing equal-mass partitions

and testing for overlap in partitions.

70

Identity

NOT

71

Crossover

N-2

N-2

N-11

1

2 NN

1

2

N

N

N

N

NN

N

X

N-4

N-4 N-2

N-3

2

2

4 NN

N

N

N

NN

N

Y

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N-3

1

2

N

N

N

N

N

N-3
N

N-22

1

NN

N

N

N

N

N-1

N-3

2

1

N

N

N

N

N

N

N

N

N

N

2

2

NN

N

N

N

NN

N

1

1

NN

N

N

N

NN

N

N

N

N

N

N

N

N

N-2

N-2

2

X

N-4

N-4

4

Y

AND

Having built these gates, we need to ensure that no partition spans more than one gate.

We can do this by adding several pointmasses of mass N in the space between gates. For

each pointmass in a gate, we add one such node between that pointmass and every point-

72

mass that is not in the same gate. If there are n gates, there are O(n2) such pointmasses

added.

Using NOT and AND in series we can create NAND gates, with which we can build

any Boolean circuit using O(n2) points broken into O(n2) partitions such that finding a

equal-mass convex partitioning of the points would imply a solution to the Boolean Circuit.

Therefore BSAT ≤p Equal −Mass Convex Partitioning of Pointmasses

Theorem 6 Equal Mass Convex partitioning of point masses is NP-Complete

Proof 6 From lemmas 4 and 5, Equal Mass Convex partitioning of point masses is both in

NP and NP-hard. Therefore it is NP-complete.

73

Bibliography

[1] S. kook Yun, D. A. Hjelle, H. Lipson, and D. Rus, “Planning the reconfiguration of grounded truss
structures with truss climbing robots that carry truss elements,” in Proc. of IEEE/RSJ IEEE International
Conference on Robotics and Automation, Kobe, Japan, May 2009.

[2] S. kook Yun, M. Schwager, and D. Rus, “Coordinating construction of truss structures using distributed
equal-mass partitioning,” in Proc. of the 14th International Symposium on Robotics Research, Lucern,
Switzerland, August 2009.

[3] H. Meyr, “Supply chain planning in the german automotive industry,” Or Spectrum, vol. 26, no. 4, pp.
447–470, 2004.

[4] H. Mather and I. of Operations Management, Competitive manufacturing. Prentice Hall, 1988.

[5] “National census of fatal occupational injuries in 2009,” News Release, August 2010.

[6] S. kook Yun, “Coordinating construction by a distributed multi-robot system,” Ph.D. dissertation, MIT,
2010.

[7] “Automatic factory,” Sep 1953. [Online]. Available:
http://www.time.com/time/magazine/article/0,9171,818947,00.html

[8] C. Null and B. Caulfield, “Fade to black the 1980s vision of ”lights-out” manufacturing, where robots
do all the work, is a dream no more.” Jun 2003.

[9] G. A. Fowler, “Holiday help: People vs. robots,” Wall Street Journel, December 2010.

[10] P. Wurman, R. D Andrea, and M. Mountz, “Coordinating hundreds of cooperative, autonomous vehicles
in warehouses,” in proceedings of the national conference on artificial intelligence, vol. 22, no. 2.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007, p. 1752.

[11] I. Hobkirk and R. Shecterle, “Scalability, flexibility, portability: Zappos re-writes the rules for ware-
house design,” Aberdeen Group, Tech. Rep., May 2008.

[12] S. Teller, M. Walter, M. Antone, A. Correa, R. Davis, L. Fletcher, E. Frazzoli, J. Glass, J. How,
A. Huang, et al., “A voice-commandable robotic forklift working alongside humans in minimally-
prepared outdoor environments,” in Robotics and Automation (ICRA), 2010 IEEE International Con-
ference on. IEEE, 2010, pp. 526–533.

[13] Robots using ros. [Online]. Available: http://www.ros.org/wiki/Robots

[14] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic Networks, ser. Applied Mathematics
Series. Princeton University Press, 2009, electronically available at http://coordinationbook.info.

[15] G. Theraulaz and E. Bonabeau, “Coordination in distributed building,” Science, vol. 269, no. 5224, pp.
686–688, 1995. [Online]. Available: http://www.sciencemag.org/content/269/5224/686.abstract

[16] J. Werfel and R. Nagpal, “International journal of robotics research,” Three-dimensional construction
with mobile robots and modular blocks, vol. 3-4, no. 27, pp. 463–479, 2008.

74

[17] L. Matthey, S. Berman, and V. Kumar, “Stochastic strategies for a swarm robotic assembly system.” in
Proceedings of IEEE International Conference on Robotics and Automation. IEEE, 2009, pp. 1953–
1958.

[18] J. Thomas and K. Baker, “Modelling of assembly partitions for a distributed environment,” in Robotics
and Automation, 1993. Proceedings., 1993 IEEE International Conference on. IEEE, 1993, pp. 52–57.

[19] S. kook Yun and D. Rus, “Optimal distributed planning for self assembly of modular manipulators,”
in Proc. of IEEE/RSJ IEEE International Conference on Intelligent Robots and Systems, Nice, France,
Sep 2008, pp. 1346–1352.

[20] A. Bolger, M. Faulkner, D. Stein, L. White, S. kook Yun, and D. Rus, “Experiments in decentralized
robot construction with tool delivery and assembly robots,” in Proc. of IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2010.

[21] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for mobile sensing networks,”
Robotics and Automation, IEEE Transactions on, vol. 20, no. 2, pp. 243–255, 2004.

[22] M. Schwager, J.-J. Slotine, and D. Rus, “Decentralized, adaptive control for coverage with networked
robots,” in Robotics and Automation, 2007 IEEE International Conference on, april 2007, pp. 3289–
3294.

[23] M. Pavone, E. Frazzoli, and F. Bullo, “Distributed policies for equitable partitioning: Theory and appli-
cations,” in Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, dec. 2008, pp. 4191–
4197.

[24] S. kook Yun and D. Rus, “Distributed coverage with mobile robots on a graph Locational optimization
and equal-mass partitioning,” in Workshop on the Algorithmic Foundations of Robotics, 2010.

[25] S. Yun and D. Rus, “Adaptation to robot failures and shape change in decentralized construction,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference on. Institute of Electrical and
Electronics Engineers, 2010.

[26] M. Hsieh and J. Rogoff, “Complexity measures for distributed assembly tasks,” Proc. of the 2010 Per-
formance Metrics for Intelligent Systems Workshop, 2009.

[27] P. Yiu, “The uses of homogeneous barycentric coordinates in plane euclidean geometry,” International
Journal of Mathematical Education in Science and Technology, vol. 31, pp. 569–578, 2000.

[28] F. Preparata and S. Hong, “Convex hulls of finite sets of points in two and three dimensions,” in Com-
munications of the ACM, 1977.

[29] J. R. Ross A. Knepper, Todd Layton and D. Rus, “Ikeabot: An autonomous multi-robot coordinated
furniture assembly system,” in Proceedings of the IEEE International Conference on Robotics and
Automation, 2013.

[30] T. R. Schoen and D. Rus, “Decentralized robotic assembly with physical ordering and timing con-
straints,” in Proceedings of the IEEE/RSJ International Conference on Intellegent Robots and Systems,
2013 (submitted).

[31] T. R. Schoen, “Constraint-aware distributed robotic assembly and disassembly,” Master’s thesis, MIT,
2012.

[32] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source Software, 2009.

[33] S. Skaff, P. Staritz, and W. Whittaker, “Skyworker: Robotics for space assembly, inspection and main-
tenance,” Space Studies Institute Conference, 2001.

[34] M. Nechyba and Y. Xu, “Human-robot cooperation in space: SM2 for new spacestation structure,”
Robotics & Automation Magazine, IEEE, vol. 2, no. 4, pp. 4–11, 1995.

75

[35] D. Stein, T. R. Schoen, and D. Rus, “Constraint-aware coordinated construction of generic structures,”
in Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011 (submitted).

[36] G. Haag, “Automated parking garage,” US Patent US Patent App. 20,040/258,506, 2004.

[37] M. Pavone, E. Frazzoli, and F. Bullo, “Distributed algorithms for equitable partitioning policies: Theory
and applications,” in IEEE Conference on Decision and Control, Cancun, Mexico, Dec 2008.

[38] O. Baron, O. Berman, D. Krass, and Q. Wang, “The equitable location problem on the plane,” European
Journal of Operational Research, vol. 183, no. 2, pp. 578–590, 2007.

[39] K. Robotics. Kuka youbot manual v0.81. [Online]. Available: http://youbot-store.com/downloads/

[40] M. Faulkner, “Instrumented tools and objects: Design,algorithms, and applications to assembly tasks,”
Master’s Thesis, Massachusetts Institute of Technology, CSAIL Distributed Robotics Laboratory, June-
Aug. 2009.

[41] M. Schwager, J. McLurkin, J. J. E. Slotine, and D. Rus, “From theory to practice: Distributed coverage
control experiments with groups of robots,” in Proceedings of International Symposium on Experimen-
tal Robotics, Athens, Greece, July 2008.

[42] S. kook Yun, D. A. Hjelle, H. Lipson, and D. Rus, “Planning the reconfiguration of grounded truss
structures with truss climbing robots that carry truss elements,” in Proc. of IEEE/RSJ IEEE International
Conference on Robotics and Automation, Kobe, Japan, May 2009.

[43] C. Detweiler, M. Vona, Y. Yoon, S. kook Yun, and D. Rus, “Self-assembling mobile linkages,” IEEE
Robotics and Automation Magazine, vol. 14(4), pp. 45–55, 2007.

[44] “irobot create open interface (oi) specification.” [Online]. Available: iRobot.com

[45] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng, “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source Software, 2009.

[46] T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, “Visibility of disjoint polygons,” Algorith-
mica, vol. 1, no. 1, pp. 49–63, 1986.

[47] N. Koenig and A. Howard, “Gazebo-3d multiple robot simulator with dynamics (2003).”

[48] B. Chu, K. Jung, Y. Chu, D. Hong, M. Lim, S. Park, Y. Lee, S. Lee, M. Kim, and K. Ko, “Robotic au-
tomation system for steel beam assembly in building construction,” in Autonomous Robots and Agents,
2009. ICARA 2009. 4th International Conference on. IEEE, 2009, pp. 38–43.

[49] V. Hunt, Industrial robotics handbook. Industrial Press Inc., 1983.

76

